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ABSTRACT: This study provides a comparison of the operational HRRR version 4 and its eventual successor, the experi-
mental Rapid Refresh Forecast System (RRFS) model (summer 2022 version), at predicting the evolution of convective
storm characteristics during widespread convective events that occurred primarily over the eastern United States during
summer 2022. In total 32 widespread convective events were selected using observations from the MRMS composite reflec-
tivity, which includes an equal number of MCSs, quasi-linear convective systems (QLCSs), clusters, and cellular convec-
tion. Each storm system was assessed on four primary characteristics: total storm area, total storm count, storm area ratio
(an indicator of mean storm size), and storm size distributions. It was found that the HRRR predictions of total storm area
were comparable to MRMS, while the RRFS overpredicted total storm area by 40%–60% depending on forecast lead
time. Both models tended to underpredict storm counts particularly during the storm initiation and growth period. This
bias in storm counts originates early in the model runs (forecast hour 1) and propagates through the simulation in both
models indicating that both miss storm initiation events and/or merge individual storm objects too quickly. Thus, both
models end up with mean storm sizes that are much larger than observed (RRFS more so than HRRR). Additional analy-
ses revealed that the storm area and individual storm biases were largest for the clusters and cellular convective modes.
These results can serve as a benchmark for assessing future versions of RRFS and will aid model users in interpreting
forecast guidance.
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1. Introduction

Widespread areas of convection are responsible for bring-
ing beneficial rains as well as damaging winds and hail, dan-
gerous lightning, and flash flooding. Thunderstorms also have
a major impact on both ground and air transportation that
can result in significant travel delays, and sometimes danger-
ous conditions both along highways and for aviation. Under-
standing the skill of numerical weather prediction models at
predicting convective storms is crucial for decision makers in
planning and mitigating their impact on society. In this study,
we assess the skill of two convection-permitting models in pre-
dicting the characteristics of widespread convection events.
Here, the term widespread is used to indicate that the size of
the region impacted by convection exceeds 300 000 km2 (about
the size of Arizona), while the density of peak convection (de-
fined at the 35-dBZ threshold) exceeds at least 1.5% of the
area. These widespread events may be characterized by one or
more modes of convective organization [e.g., cells, clusters, me-
soscale convective systems (MCS), and quasi-linear convective
systems (QLCS) but with a clear dominant mode at maturity.]

MCSs and QLCSs tend to consist of large individual con-
vective elements. Because of their size, these convective sys-
tems produce a majority of the severe weather reports (e.g.,

Gallus et al. 2008; Smith et al. 2012). These larger-scale con-
vective systems also tend to be major contributors to flight de-
lays across the United States, with convective storms totaling
over 50% of weather-related delays reported each summer
(FAA 2022a). Widespread areas of storms characterized by
smaller scale organization, such as cellular storms or storm
clusters, can have significant impacts as well including severe
characteristics of supercells that can generate large damaging
hail and tornadoes (e.g., Rasmussen et al. 1994; Homeyer et al.
2023).

It has been shown that high-resolution forecast models,
with horizontal grid spacing of 4 km or less, are able to ade-
quately capture much of the mesoscale dynamics and thermo-
dynamic processes required to effectively predict convective
storm mode (e.g., Weisman et al. 1997; Done et al. 2004;
Weisman et al. 2008; Schwartz et al. 2009). As such, opera-
tional modeling centers around the world are running re-
gional NWP models at convection-permitting resolutions
(e.g., Walters et al. 2019; Termonia et al. 2018; Husain et al.
2019) in order to provide short-term to next-day predictions
on the timing, location, organization and severity of convec-
tive storms as well as improving the depiction of many other
mesoscale weather phenomena (e.g., Benjamin et al. 2016;
Roff et al. 2022). This improved guidance is critical for provid-
ing advanced notice of the potential for high impact weather.
Accurate advanced prediction of the macroscale properties of
convective storm systems (including the distribution of storm
sizes, their coverage, shape, and orientation) are also critical
for mitigating their impacts on air travel (Pinto et al. 2015).
The HRRR (Benjamin et al. 2016; Dowell et al. 2022;
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Weygandt et al. 2022) has been providing convective storm
guidance to a range of users including aviation meteorologists
over the past decade. James et al. (2022) summarizes the per-
formance of the HRRR throughout the development process
and provides an overview of previous studies that evaluated
various aspects of the HRRR over the years.

Several studies have evaluated more recent versions (v3
and v4) of the HRRR in terms of its skill at predicting various
characteristics of convective storms (e.g., Blaylock and Horel
2020; Duda and Turner 2021; Grim et al. 2022; James et al.
2022). Duda and Turner (2021) found that HRRRv3 overpre-
dicted the number of convective storm objects, with a large
contribution of this bias coming from the smallest storm ob-
jects at low reflectivity thresholds, which are not adequately
resolved by the model; on the other hand, it also overforecasts
large objects at high reflectivity thresholds. They found that
this bias was most pronounced across much of the southern
United States, and the southeastern United States in particu-
lar. This finding is consistent with that reported by Grim et al.
(2022) who found that while HRRRv4 and HRRR-Ensemble
were able to capture the amplitude, timing, and evolution of
QLCS and MCS macroscale characteristics, neither modeling
system performed well for the smaller scale convective modes
(cellular and clusters), which are the dominant convective
mode in the southeastern United States (Miller and Mote
2017). They found that for the cellular and cluster convective
modes the storm objects tended to be 1.5–2.0 times larger
than observed. James et al. (2022) found that HRRRv4 had
poor skill at predicting smaller-scale diurnally forced convec-
tive storms during the climatological peak time of day for con-
vection initiation (CI) and storm growth (i.e., between 1500
and 0300 UTC). In contrast, they found that the HRRRv4
performed best during the overnight hours which tend to be
dominated by larger, long-lived convective systems. They
also found that the assimilation of radar reflectivity had the
largest positive impact in the runs initialized during the
overnight hours with the positive impact being most pro-
nounced during lead hours 1–4. Finally, Weygandt et al.
(2022) describe how the radar latent heating initialization
technique implemented in HRRRv4 shows significant im-
provement in short-range (0–6 h) forecasts of convective
precipitation.

Over the next 1–2 years, the HRRRv4 is being transitioned
to the Finite Volume Cubed (FV3)-based (Chen et al. 2013)
Rapid Refresh Forecast System (RRFS, Alexander and Car-
ley 2023). To support this transition, this study presents an ini-
tial assessment of the experimental RRFS relative to the
HRRR in the prediction of convective storms. Section 2 de-
scribes the methodology used to determine the macrophysical
characteristics of widespread storm events. Section 3 pro-
vides an example of how the methodology is applied to as-
sess the relative performance of HRRR and RRFS for a
single MCS case. Section 3 also discusses how the results
from each case are composited and provides a statistical
comparison of HRRR versus RRFS model performance
across 32 cases. Finally, section 4 provides a summary of the
major results of the study.

2. Methodology

The statistical object-based technique described by Grim
et al. (2022) is used to assess the performance of the RRFS
model relative to the HRRR at predicting the macroscale
characteristics of convective storms. The HRRR data were
obtained from operational runs performed at NCEP, while
the experimental RRFS data were obtained from NOAA
Global Systems Laboratory (GSL). Dowell et al. (2022) ex-
plains the latest features of the HRRR, while Alexander and
Carley (2023) provide the latest information on the configura-
tion and performance of RRFS. Both HRRR and RRFS use
3-km grid spacing with configurations that are similar, with
the main difference being the dynamical core; HRRR uses
the WRF-ARW dynamical core (Skamarock et al. 2008) while
RRFS uses the FV3 dynamical core (Chen et al. 2013). Both
modeling systems assimilate a range of conventional observa-
tions using hourly cycling and a hybrid ensemble-variational
approach within the Gridpoint Statistical Interpolation (GSI;
Benjamin et al. 2016; Dowell et al. 2022). In addition to the
conventional data assimilation (DA) process, a method for
producing a cloud analysis is implemented which includes
cloud clearing and building based on satellite and ceilometer
data and adding precipitation hydrometeors (rain, snow, and
graupel) using radar reflectivity and lightning observations
as discussed in Benjamin et al. (2021) and Weygandt et al.
(2022). Finally, a different DA system, which uses an ensem-
ble variational method to assimilate radar reflectivity (Wang
and Wang 2017), was implemented and tested in RRFS starting
on 6 July 2022. These test runs were performed in place of the
original DA for forecasts issued between 1900 and 0000 UTC.
In order to isolate the performance of the dynamical cores, only
model runs in which the two dynamical cores used the same
DA system (i.e., all runs before 6 July 2022, and only those is-
sued between 0100 and 1800 UTC starting 6 July 2022) are eval-
uated in this study.

Observed areas of convection are diagnosed from a national
mosaic of composite reflectivity from the operational MRMS
system (see Smith et al. 2016). Based on an analysis of MRMS
composite reflectivity, a set of 32 cases were selected from a
3-month period (1 June–31 August) during the 2022 convective
season. Cases were chosen subjectively to fit into one of four
categories, based on their predominant convective mode at ma-
turity: cellular, cluster, QLCS, and MCS. The total number of
cases chosen was primarily limited by the availability of RRFS
model output that was running in an experimental environment.
The availability of each dataset is summarized in Fig. 1. The
union of RRFS, HRRR, and MRMS data availability indicated
the time periods available from which cases were selected. Cases
were only considered for periods when at most one forecast
lead time or observed hour is missing. Based on this criterion,
nearly half of the cases selected occurred during the second half
of June when the RRFS model was most consistently available.
The case start time, defined as being one hour prior to the in-
crease in storm area coverage, is indicated in Fig. 1 with details
of each case given in Table 1.

Figure 2 shows the composite reflectively at mature stage
for all 32 cases, organized by convective mode and date. The
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cellular convective mode includes thunderstorm events domi-
nated by small-scale (i.e., ,50-km diameter) mostly circular
storms throughout their life cycle that primarily occur under
weakly forced conditions driven by diurnal heating. The mul-
ticellular cluster mode includes cases in which storm cells
grew and often merged to form clusters, and were generally a
mixture of cellular convection and clusters of storms (but
dominated by multicellular clusters). The QLCS convective
mode includes storms that evolved into long nearly continu-
ous lines of convection without substantial trailing or leading
stratiform regions. Finally, the MCS convective mode includes
only those convective systems that developed substantial
stratiform regions exceeding 100 km in width. The QLCS and
MCS modes were separated since the larger stratiform region
of the MCSs creates a stronger cold pool, as well as to account
for storm characteristic differences coming from the strati-
form rain regions. For each convective mode, eight cases were

selected (Table 1), providing a robust sample size for statisti-
cal comparisons between each storm category.

Cases were selected within a region bounded by the U.S.
and Canadian coastlines to the south and east, 518N latitude
to the north, and the 1058W meridian on the west. The west-
ern United States and most of Canada were excluded from
these analyses because there are substantial areas that lack
adequate radar coverage. The start date and time of the initial
evaluation periods are listed in Table 1; this marks the begin-
ning of the observed increase in convective activity for a given
convective event. The model runs used in the primary evalua-
tion were from a single initialization time for each case, initial-
ized one hour before the observed time of CI. The end date
and time for each case was the time when the convective activ-
ity reached a minimum, or 14 h after the start date and time,
whichever came first. The 14-h limit ensured that the entire
case period fell entirely within a single 15-h RRFS forecast.
Using these criteria, the case periods ranged from 9 to 14 h.

Each dataset is mapped onto a common grid defined using
a regular latitude–longitude projection and 0.058 grid spacing
applying bilinear interpolation between grid points. The influ-
ence of each pixel was then expanded by setting the value at
each grid point to the maximum value occurring within a
three-gridpoint radius. This was done so that small gaps be-
tween convective elements that are part of a larger convective
system were considered as a single storm object following
Davis et al. (2006). The TITAN (Dixon and Wiener 1993)
software was used to identify storms using a technique similar
to that described by Pinto et al. (2015) and Grim et al. (2022).
A composite reflectivity threshold of 35 dBZ was initially
used to identify storm objects in both the MRMS and model
data. This threshold is comparable to that used previously to
identify areas of impactful convective rainfall (e.g., Roberts
and Rutledge 2003; Davis et al. 2006). While this threshold is
lower than that used in other studies to detect the most in-
tense convective storms (e.g., Skinner et al. 2018; Potvin et al.
2019), the 35-dBZ threshold used here better captures the full
range of intensities associated with convective storms.

Figure 3 compares probability density functions observed
with MRMS with those obtained for all forecast lead times
from both RRFS and HRRR during the period when both
models used the same DA system. The area used to produce
this plot was defined as all land areas of the continental
United States and far southeastern Canada east of 1058W and
south of 518N. The mean area for a given reflectivity bin
(0–70 dBZ 3 1 dBZ) was found by summing areas for a given
bin using concurrently available data for all 92 days of JJA
2022. Peak observed mean area occurs around 12 dBZ. The
observed reflectivity decreases for values below 12 dBZ due
to the suppression of these values by radar clutter removal
techniques. Thus, comparisons between modeled and observed
values should be constrained to be for reflectivity values greater
than ;15 dBZ. It is evident that (excluding analyses}i.e., fore-
cast hour 0) both models tend to have nearly equal or lesser area
coverage at thresholds between 15 and 32 dBZ (more so HRRR)
and overpredict the area coverage at thresholds greater than
40 dBZ. It is also interesting to note that in both models, the
reflectivity area increases with forecast lead time across all

FIG. 1. Availability during summer 2022 of (a) MRMS, (b) RRFS,
(c) HRRR, and (d) all products combined. MRMS availability is
either zero or one, while RRFS and HRRR availability is shaded
from zero to one based on the fractional availability of their respec-
tive hourly forecast lead times to 15 h. The all-product availability is
the minimum of the percentage availability of the two models at their
respective lead times and MRMS at its respective valid times. Over-
laid on the all-product availability are the analysis times of the
32 cases (1 h before each event started.)
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reflectivity area bins. As such, both models show the best corre-
spondence with the MRMS at the longest lead times for reflectiv-
ities less than;35 dBZ; it is also evident that RRFS tends to have
less bias than the HRRR at these lower thresholds. In contrast,
for reflectivities greater than 40 dBZ, both models overpredict the
mean area with RRFS having the larger overprediction bias.

Finally, it is seen that there is an unrealistic spike in the dis-
tribution of mean reflectivity area for the analyses (forecast
hour 0) of both models. The spike in the HRRR data has a
sawtooth-like pattern between 18 and 32 dBZ while RRFS
has a more Gaussian-looking spike between 22 and 42 dBZ.
Both spikes lie well above the observed mean area within the
respective ranges, while the assimilated coverage of lower re-
flectivity values is significantly underestimated. These spikes
in reflectivity result from the interplay between the dynamical
core of each model and the cloud analysis methodology which
utilizes simplified equations to compute the hydrometeor
characteristics (i.e., rain and snow mixing ratios) from radar
reflectivity (Weygandt et al. 2022). Interestingly, these spikes
in the 0-h reflectivity are entirely gone by forecast hour 1.

An example of how objects are identified by TITAN when
using a 35-dBZ threshold is shown in Fig. 4. Any 0.058 3 0.058

pixel or collection of adjacent pixels exceeding 35 dBZ is clas-
sified as a convective storm. Note the allowance of gaps be-
tween small scale storm elements within a given polygon.
Each TITAN storm object is stored as a polygon with up to
72 vertices that surround groupings of related pixels including
the small gaps between convective elements. The area of each
storm was determined by summing the area of each pixel (col-
ored blue in Fig. 4) within each TITAN polygon (red outlines
in Fig. 4). (The few tiny green areas are where the interpo-
lated radar data used by TITAN slightly smooths out the re-
flectivity, thus its interpolated value that was previously
barely exceeding 35 dBZ no longer exceeds this threshold;
this was done so as to not over-/underestimate storm area as
much as possible between the different products with varying
source resolutions.) As evident from Fig. 4, this technique
produces far more accurate estimates of individual storm area
than the TITAN polygon. This is especially important for the
larger storms because the 72-vertex limit of TITAN does not
allow it to tightly encompass larger storms with complex
shapes (e.g., see storm object indicated by the black arrow in
Fig. 4). The number of storms at each time for each case is
given as the number of TITAN storm polygons, while the

TABLE 1. Case start, peak, and end dates, period, dominant mature storm organization type, center latitude–longitude, and if it is
included in the lag subset (indicated by an asterisk).

Start time/date Peak time/date End time/date
Case

period (h)
Dominant
storm type

Center
lat (8)

Center
lon (8)

Lag
subset

1600 UTC 16 Jun 2300 UTC 16 Jun 0200 UTC 17 Jun 10 MCS 34.9 280.5
1800 UTC 24 Jun 0800 UTC 25 Jun 0800 UTC 25 Jun 14 MCS 47.0 298.4 *
0000 UTC 26 Jun 0900 UTC 26 Jun 1400 UTC 26 Jun 14 MCS 38.5 294.2 *
0500 UTC 7 Jul 1200 UTC 7 Jul 1900 UTC 7 Jul 14 MCS 38.9 292.8
1900 UTC 9 Jul 0200 UTC 10 Jul 0500 UTC 10 Jul 10 MCS 32.1 288.2 *
0200 UTC 15 Jul 1200 UTC 15 Jul 1600 UTC 15 Jul 14 MCS 41.9 294.1
0400 UTC 23 Jul 1500 UTC 23 Jul 1800 UTC 23 Jul 14 MCS 41.3 287.5 *
0200 UTC 26 Jul 1300 UTC 26 Jul 1500 UTC 26 Jul 13 MCS 38.4 289.6
2200 UTC 15 Jun 0400 UTC 16 Jun 0900 UTC 16 Jun 11 QLCS 43.5 290.1
1700 UTC 16 Jun 2000 UTC 16 Jun 0300 UTC 17 Jun 10 QLCS 43.2 277.0
1400 UTC 21 Jun 0300 UTC 22 Jun 0400 UTC 22 Jun 14 QLCS 41.0 295.4 *
1500 UTC 27 Jun 2000 UTC 27 Jun 0100 UTC 28 Jun 10 QLCS 36.6 279.8
1900 UTC 24 Jul 0100 UTC 25 Jul 0900 UTC 25 Jul 14 QLCS 42.1 280.1
1700 UTC 20 Aug 0400 UTC 21 Aug 0700 UTC 21 Aug 14 QLCS 42.0 286.4
1600 UTC 28 Aug 0400 UTC 29 Aug 0600 UTC 29 Aug 14 QLCS 41.3 289.2 *
1300 UTC 30 Aug 2300 UTC 30 Aug 0100 UTC 31 Aug 12 QLCS 36.4 282.8
0400 UTC 16 Jun 1100 UTC 16 Jun 1700 UTC 16 Jun 13 Clusters 39.7 276.5
1400 UTC 20 Jun 0200 UTC 21 Jun 0400 UTC 21 Jun 14 Clusters 47.3 298.9 *
1900 UTC 22 Jun 0100 UTC 23 Jun 0500 UTC 23 Jun 10 Clusters 39.5 279.2 *
1700 UTC 26 Jun 0000 UTC 27 Jun 0500 UTC 27 Jun 12 Clusters 32.8 289.4 *
1800 UTC 27 Jun 0100 UTC 28 Jun 0700 UTC 28 Jun 13 Clusters 30.4 297.6
1500 UTC 3 Jul 2000 UTC 3 Jul 0500 UTC 4 Jul 14 Clusters 31.0 284.9 *
1600 UTC 30 Jul 0000 UTC 31 Jul 0300 UTC 31 Jul 11 Clusters 33.0 289.6
1500 UTC 31 Aug 2100 UTC 31 Aug 0200 UTC 1 Sep 11 Clusters 32.7 295.8
1500 UTC 25 Jun 2100 UTC 25 Jun 0200 UTC 26 Jun 11 Cellular 32.2 285.0
1500 UTC 28 Jun 2300 UTC 28 Jun 0400 UTC 29 Jun 13 Cellular 29.9 285.3
1500 UTC 2 Jul 2000 UTC 2 Jul 0000 UTC 3 Jul 9 Cellular 38.5 281.1 *
1700 UTC 24 Jul 2200 UTC 24 Jul 0300 UTC 25 Jul 10 Cellular 31.0 286.2
1400 UTC 25 Jul 1900 UTC 25 Jul 0100 UTC 26 Jul 11 Cellular 32.5 287.6 *
1600 UTC 9 Aug 2100 UTC 9 Aug 0400 UTC 10 Aug 12 Cellular 33.8 284.7
1700 UTC 19 Aug 2300 UTC 19 Aug 0200 UTC 20 Aug 9 Cellular 43.2 294.2
1400 UTC 22 Aug 1900 UTC 22 Aug 0300 UTC 23 Aug 13 Cellular 39.8 274.7 *
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mean individual storm area is computed by dividing the total
storm area by the number of TITAN polygons.

For each storm event, the evaluation area was determined
using the entire history of modeled and observed storm ob-
jects (e.g., Fig. 5). A large case-specific polygon was then man-
ually drawn around each event that encompassed the entire
area where MRMS, HRRR, and RRFS had substantial

convection. In this way, the observed (MRMS) and modeled
(both HRRR and RRFS) convective storm systems are
matched for each storm event. Only those individual TITAN
storm objects whose center points are within the large manu-
ally drawn case-specific polygons are used in the calculation
of storm statistics. This methodology allows for focusing the
assessment on the statistical properties of the convective

FIG. 2. Radar depictions from the College of DuPage (https://weather.cod.edu/satrad/index.php) of the 32 convective cases during the ma-
ture stage of each event from the summer of 2022. The cases are ordered by date and event type.
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storm areas while not requiring any of the storm areas to
overlap. However, as can been seen in Fig. 5, there tends to
be both significant overlap of the storm areas and also notable
differences in the overall extent of convection in each dataset.
Figure 6 shows the polygons for all 32 cases. The evaluation re-
gions nearly cover the entire United States east of the Rocky
Mountains and southern Canada, with the greatest number of
cases included in this study occurring over the southeastern
United States.

To assess the representativeness of the macroscale proper-
ties of the 32 convective storm systems selected for this study,
the distribution of observed storm sizes obtained from the
cases is compared with that obtained for the entire 92-day
period: 1 June–31 August 2022 (Fig. 7). The area limits
(km2) of the 20 bins used to define the probability density
function were varied with size to account for much more nu-
merous small convective storm cells, according to the equa-
tion: bini 5 100 3 100.2i, where i is the bin limit number,
ranging from 0 to 20. The shape of the observed storm size
distribution obtained for the 32 cases selected for this study
is very similar to that obtained for the entire summer, indi-
cating the general applicability of the findings. It is noted
that the 32 cases had a higher frequency of occurrence for
nearly all storm sizes larger than 400 km2, with the differ-
ence being most notable for storms exceeding 20 000 km2.
This indicates that the performance statistics presented be-
low are slightly weighted toward convective systems that in-
clude larger storms, as expected since this study focuses
more on widespread convective cases.

3. Results

The object-based storm identification technique discussed
above was used to identify the macroscale properties of the
convective systems (total storm area, total storm count, and
individual storm area) for 32 total cases. Each case was se-
lected based on the detection of a widespread storm system in
the MRMS reflectivity data and subsequent matching of the

FIG. 3. Hourly mean frequency of pixels within 1-dBZ-wide bins
for all times in JJA 2022, except those when RRFS used ensemble
variational radar-reflectivity data assimilation, for MRMS (thick,
solid black), HRRR (rainbow-colored long dashes), and RRFS
(rainbow-colored short dashes) over the continental United States
and far southeastern Canada east of 1058W and south of 518N for
all forecast lead times.

FIG. 4. MRMS depiction of raw composite reflectivity greater
than 35 dBZ (blue and green shades) at 1200 UTC 15 Jul 2022.
The TITAN-identified objects are outlined in red, while the area of
each storm within a TITAN object is indicated by blue, and tiny
sections of storms outside of TITAN objects are shaded green. A
black arrow points to the TITAN storm object mentioned in the
text.

FIG. 5. All areas of MRMS (gray), HRRR (red), and RRFS
(blue) composite reflectivity exceeding 35 dBZ during the duration
of the MCS case on 15 Jul 2022. The black outline indicates the
subjectively defined event area encompassing the case.
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model predicted storm areas. An important caveat of this
matching approach is that the cases were conditionally sam-
pled based on the observed composite reflectivity, so it does
not consider model storm systems that were substantially
more developed than in the observations.

a. Case study

The verification technique is demonstrated using an MCS
event that occurred over the Midwestern United States on 15
July 2022 (Fig. 8). At 0000 UTC, daytime convection was

weakening near the North Dakota–Minnesota border (not
shown.) At 0200 UTC, MRMS observations indicate that new
convection initiated on the northern end of an area of other-
wise decaying precipitation. Based on this storm initiation
time, the forecasts issued at 0100 UTC were selected for
model evaluation for this case. By 0700 UTC, the system
started to quickly grow upscale resulting in a 700-km-long
northwest–southeast-oriented broken line of storms (falling
into the QLCS category at that time) that extended from near
Fargo, North Dakota, to central Wisconsin (Fig. 8a). Both mod-
els are delayed in the development of convective area by
0700 UTC with RRFS only capturing the convection over the
North Dakota–Minnesota border while HRRR captured
the QLCS over Minnesota–Iowa. Both models have little of the
weaker convective area observed over Iowa and northwestern
Illinois (Figs. 8a–c). Over the next few hours, the QLCS contin-
ued to strengthen such that by 1200 UTC, several individual
storm elements had converged into a large moderately well-
organized MCS (Fig. 8d), stretching from northern Wisconsin
into eastern Kansas. Both models also have a good representa-
tion of the MCS at this stage with the RRFS model capturing
the southern extent better and the HRRR better capturing the
structure of convection over Wisconsin (Figs. 8d–f).

Figure 9 shows a time series of modeled and observed
storm characteristics for this case, using the validation region
encompassing its entire evolution obtained from both models
and the observations (see Fig. 5). The observations and both
models had minimal convective area at 0200 UTC (Fig. 9) with
very limited storm development between 0200 and 0600 UTC.
Between 0600 and 0700 UTC, the observations indicated a
burst of rapid storm development that both models were late to
capture with rapid growth (as indicated by sudden change in
the slope of the lines for total storm area) starting one hour late
in the RRFS and two hours late in the HRRR (Fig. 9a). MRMS
reached peak aerial coverage at 1200 UTC, while RRFS and
HRRR maximized an hour later, after which they all decreased
in coverage through the end of the 15-h forecast.

The MRMS total storm count increased from 9 discrete
storm objects at 0200 UTC to a maximum of 86 storm objects
at 1000 UTC (Fig. 9b); RRFS and HRRR started with similar

FIG. 6. (left) Polygons outlining the maximum extent of each of the 32 cases used in this study. Lines are colored by
date from 1 Jun to 31 Aug 2022: blue–green–yellow–orange–red–maroon. (right) The number of polygons encircling
each pixel over the domain.

FIG. 7. PDF of MRMS storm area, as defined by reflectivity .

35 dBZ over the United States and Canada east of 1058W and
south of 518N. The black line is the PDF for all dates and times
encompassing the 32 cases evaluated in this study, while the red
line is the PDF obtained using MRMS data from the entire sum-
mer: 1 Jun–31 Aug 2022 during the period that both models
used the same DA scheme.
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numbers of storm objects, but both models were delayed at
initiating a substantial number of new storms with RRFS be-
ing delayed until 0700 UTC and HRRR being delayed until
0800 UTC. In fact, the HRRR significantly underpredicted
the storm count throughout the simulation whereas RRFS
storm counts more closely match the observed counts from
0800 UTC onward.

Mean individual storm area (MISA, Fig. 9c) was calculated by
dividing the total storm area at a given time by the total storm
count. In this case, both models were similar to the observed evo-
lution of MISA for the first nine hours indicating compensation
of biases in storm area (too small) and storm counts (too few)
but that the models were able to capture the general trend of up-
scale storm growth. Starting around 1200 UTC, the modeled
MISA were generally much larger than observed, with the
HRRR having larger storms than the RRFS.

Identical analyses were performed for all 31 other cases
(not shown) the results of which were then composited (using

the technique described below) to assess the RRFS model perfor-
mance relative to the HRRR as a function of convective mode.

b. Calculation of composite results

A normalization approach was used for compositing,
whereby the maximum of the observed storm characteristic
(total area or total count) from MRMS for a given case (span-
ning all case times) was used to normalize the results for that
metric across all event times t. For a given case, the normal-
ized MRMS-derived storm characteristicO(t) is defined as

O(t) 5 O(t)
Omax

,

where O(t) is the observed storm characteristic at a given
time for a given case, and Omax is the maximum observed
storm characteristic value for a given case. Therefore, O(t)
varies between 0 and 1. Similarly, the normalized model

FIG. 8. Composite reflectivity from (a),(d) MRMS; (b),(e) RRFS; and (c),(f) HRRR for the 15 Jul 2022 MCS event. Composite reflectiv-
ity is valid at (top) 0700 UTC 15 Jul and (bottom) 1200 UTC 15 Jul. Forecasts were issued at 0100 UTC 15 Jul 2022 with forecast hour 6
shown in (b) and (e) and forecast hour 11 shown in (c) and (f).
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values for each storm characteristic M(t) are related to the
maximum observed value:

M(t) 5 M(t)
Omax

,

where M(t) is the model storm characteristic value for a given
case and time. It is possible for M(t) to be greater than one if
the modeled storm characteristic exceeds Omax. Composite
values were found by averaging all normalized values avail-
able for a given event hour following:

O(t) 5 1
N
∑
N

j51
Oj(t),

M(t) 5 1
N
∑
N

j51
Mj(t),

where N is the number of cases. Thus, despite using verifica-
tion polygons that vary between each case, this normalization
approach weighs each case’s contribution equally to the com-
posite time evolution for each storm characteristic.

To calculate the normalized MISA [referred to hereafter as
“individual storm area ratio” (ISAR)], the normalized total
storm area at each time for each case was divided by the nor-
malized storm count for the corresponding case and time; this
was then averaged over all cases to create the ISAR. This was
done since early and late times in an event can have a very
small number of storms (the denominator in the ratio), so

FIG. 9. Time series of (a) total storm area, (b) storm
count, and (c) mean individual storm area from
MRMS (black), RRFS (blue), and HRRR (red) for
the 15 Jul 2022 MCS event. Model runs were initial-
ized at 0100 UTC with the 1–15-h forecast shown.
Brown vertical dashed lines in (a) mark the times
shown in Fig. 8.
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that splits or mergers can result in wild fluctuations in mean
storm area from one hour to the next. It is noted that since
the ISAR is a ratio of two other normalized values, the ob-
served ISAR can be greater than one at times.

c. Composite results

1) OVERALL ASSESSMENT AT 35 DBZ

Figure 10 compares the time evolution of modeled and ob-
served normalized total storm areas, total counts, and ISARs
composited across all 32 cases. The normalized total storm
area can be used to assess model skill at predicting the life cy-
cle of widespread convective storm events. The composited
MRMS data indicate that averaged across all 32 cases, the
storm initiation and growth phase occurs through event hour
5, a mature phase lasts from hours 6 to 8, and the decay phase

occurring thereafter (Fig. 10a). (Reminder: the event hour is
one hour less than the forecast hour, since the model analysis
time is one hour before the event starts. That is, event hours 0
and 1 correspond with forecast hours 1 and 2 and so on). The
most striking difference between the two models is that
RRFS total storm area is ;40%–60% higher than MRMS
throughout the life cycle while the magnitude of HRRR total
storm area is fairly similar to MRMS. The other notable dif-
ference is that the RRFS better captures the overall timing of
the entire life cycle, while in HRRR the life cycle appears to
be out of phase by 1 h late. It is also evident that the growth
and decay rates in RRFS are both faster than observed result-
ing in a much larger amplitude of normalized storm area than
is observed or simulated by the HRRR.

The observed normalized storm count increases rapidly
during the initiation and growth phase (i.e., first 5 h) of the

FIG. 10. Normalized storm metrics for all 32 cases for MRMS (black), HRRR (red), and RRFS (blue). (a) Total
storm area, (b) storm count, (c) individual storm area ratio, and (d) storm area PDF, using a threshold of 35 dBZ for
each product.
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event (Fig. 10b). This is followed by a period of slightly decreas-
ing counts as storms grow up scale during the mature phase of
the storm until hour 9 when a more rapid decrease with time in-
dicates storms are dissipating. Both models have fewer storm
objects than observed during the initiation and growth phase of
the storm system life cycle indicating an underprediction and
delay in the number of storms initiated. This bias is evident at
forecast hour 1 (i.e., 0 h into event) and carries through several
hours into the simulation as both an early undercount and a de-
lay in the maximum count (Fig. 10b). It is seen that the modeled
peak storm count occurs 2 h later than observed in both models,
but it is better represented by the RRFS than the HRRR.

Given that the RRFS dramatically overpredicts storm area
and also tends to underpredict storm counts (especially during
the initiation and growth period), it is found that the RRFS
ISAR (an indicator of storm size) is up to 90% greater than
observed (Fig. 10c). The HRRR’s bias in ISAR tends to be
around half that found for RRFS throughout the convective

system life cycle. The ISAR reveals that the total area bias in
RRFS was due to storms being too big (as indicated by area ra-
tios greater than 1.5) and slightly too few, whereas the limited
bias in total area in HRRR can be attributed to compensating
errors with storms being both modestly too big and somewhat
too few. These results are consistent with those from Wicker
(2023), who also found that the FV3 dynamic core used in
RRFS has a higher frequency of elevated CAPE, producing
storms with deeper and stronger updrafts, larger convective
cores, and more intense precipitation rates in idealized simula-
tions. Both models generally get the proportion of small storms
and large storms correct with a slight tendency for HRRR to
overpredict the number of large storms (Fig. 10d).

2) ASSESSMENT AT OTHER REFLECTIVITY THRESHOLDS

Separate analyses were performed using additional com-
posite reflectivity thresholds (20, 25, 40, and 45 dBZ) to assess
model performance for different aspects of the widespread

FIG. 11. As in Fig. 10a, but using 20-, 25-, 40-, and 45-dBZ thresholds.
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convective storm areas (Figs. 11–13). The lower thresholds
are used to focus more on the evaluation of the stratiform re-
gions of precipitation within the widespread event, while the
higher thresholds focus on the representation of the convective
cores in the models. For the lower stratiform precipitation-
encompassing thresholds RRFS nearly matches the observed
normalized total storm area (Figs. 11a,b) in both timing and
amplitude. In contrast, large biases are evident in the RRFS at
thresholds more indicative of the convective cores with biases
increasing as a function of increasing threshold and exceeding
100% at thresholds of 40 dBZ and greater (Figs. 11c,d). On the
other hand, HRRR underpredicts the total area coverage at
lower dBZ thresholds by 25% (Figs. 11a,b) pointing to a ten-
dency to underpredict the coverage of stratiform rainfall associ-
ated with convection. At the same time HRRR also overpredicts
the area associated with the convective cores, but at a much
lower magnitude (e.g., 50% at 45 dBZ) than RRFS (Figs. 11c,d).
It is interesting to note that the growth of both convective and

stratiform rain areas are delayed in the HRRR with peak values
occurring 1–2 h late depending on the threshold used. These bias
increases with increasing reflectivity threshold are to be expected
when considering the reflectivity frequencies shown in Fig. 3, as
the model frequencies change from being equally frequent or
slightly less at 20 dBZ (depending on the forecast hour) to uni-
versally more frequent at 40 dBZ and above.

The skill of the model at predicting the evolution of storm
counts was also explored as a function of threshold (Fig. 12).
At the lower thresholds that encompass both stratiform pre-
cipitation and convective cores (i.e., 20 and 25 dBZ), both
models tend to underpredict the peak storm counts indicating
that a notable fraction of the observed CI events were missed.
This finding is similar to that shown in Fig. 10b with both
models underpredicting storm counts during the storm initia-
tion and growth stage starting at event hour 0. However, at
the 40-dBZ threshold, the RRFS predictions of storm counts
(indicating the initiation of new convective cores) are notably

FIG. 12. As in Fig. 10b, but using 20-, 25-, 40-, and 45-dBZ thresholds.
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better than that found for the HRRR, which is still delayed
and underpredicts the peak count (Fig. 12b). At 45 dBZ, the
RRFS has too many convective cores due to a longer period
of CI as compared to MRMS while the HRRR has the correct
number of CI events albeit the center of the peak appears to
be 2 h later than observed.

The ISARs shown in Fig. 13 demonstrate two perfor-
mance regimes. For the lower thresholds (which encom-
passes both stratiform regions and convective cores), the
modeled evolution of this individual storm size property
matches the observed values fairly well with HRRR storm
objects being generally smaller than RRFS. The sizes of
the more convective storm portion of the storm objects
tend to be larger than observed, similar to that shown in
Fig. 10c. However, it is found that this bias tends to change
less for the HRRR than for the RRFS (Figs. 13c,d). That
is, the most intense portion of the storms tend to be in-
creasingly too large in the RRFS model. In fact, at a

threshold of 45 dBZ, the RRFS storm objects are up to
140% larger than observed (Fig. 13d).

3) ASSESSMENT BY MATURE STORM ORGANIZATION

Model performance is also evaluated as a function of mature
convective mode using the 35-dBZ threshold. Results are ob-
tained by compositing across the eight cases selected for each
convective mode listed in Table 1. (See section 3b as a reminder
for how the storms were normalized and composited.) The
most organized and largest storm type, MCSs, (mean peak area
of 45 717 km2), with a substantial trailing stratiform region and
stronger cold pool, showed both models were late in reaching
the peak area and underestimated it by 15% (Fig. 14a). While
the peak values were similar for RRFS and HRRR, differences
in the growth period and growth rates are evident with the
HRRR growth rate being too slow and delayed by ;2 h. Note
that a percentage difference of 15% corresponds with an abso-
lute error in storm area of 5450 km2 for the mean case at peak

FIG. 13. As in Fig. 10c, but using 20-, 25-, 40-, and 45-dBZ thresholds.
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aerial coverage. Differences between the models and MRMS
are much larger for the QLCS convective mode (MRMS mean
peak area of 37502 km2) with HRRR and RRFS peaking 40%
and 85% higher than MRMS, respectively (Fig. 14b). These
overestimates in total storm area can be attributed, in part, to
the modeled growth period being 2 h longer than observed.
Also of note in the QLCS mode is that the model storm dissipa-
tion rate is faster than observed. For the clusters convective
mode, the HRRR captured the growth rate and amplitude of
storm life cycle fairly well. In contrast, the RRFS had a much
more rapid storm growth rate, overpredicting the observed
peak area by nearly 60% (Fig. 14c), compared with the MRMS
peak mean area of 35 258 km2. Finally, there are dramatic dif-
ferences in the representation of the evolution of cellular storms
between the two models. The RRFS growth rate is far too large
for this convective mode such that, despite capturing the timing

of the peak better than the HRRR, the RRFS peak area was
120% larger than observed (Fig. 14d). Meanwhile, the ampli-
tude of the cellular storm life cycle (MRMS mean peak area of
26 845 km2) is much better captured by the HRRR, albeit with
a 2-h delay in the peak area as compared with MRMS.

Exploring the model skill at predicting storm counts reveals
that both models exhibit a similar underprediction bias in the
number of storms during the initiation and growth phase re-
gardless of convective mode (Fig. 15). This negative bias is
most evident in the first 4–6 h of the convective system life cy-
cle and tends to be larger for the HRRR than RRFS. Compar-
ing Figs. 14 and 15, it is evident that the HRRR bias in total
storm area is due, in part, to its underprediction of new storm
initiations (too few storms) consistent with that reported by
James et al. (2022). Moreover, the largest discrepancy between
the models in predicting storm counts is evident for the

FIG. 14. Normalized total storm area using a 35-dBZ threshold, subset by mature convective mode: (a) MCSs,
(b) QLCSs, (c) clusters, and (d) cellular. Mean peak storm area for each mode from MRMS is given near the bottom
of each panel.
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clusters and cellular convective modes (Fig. 15d). The RRFS
better captures the observed peak in counts for these two
convective modes, while the HRRR underpredicts the peak
counts for both convective modes reaching an underpredic-
tion bias of 40% for the cellular convective mode. However,
the fact that RRFS captures the counts fairly well while dras-
tically overpredicting total storm area (Fig. 14d) indicates
that the individual storms predicted by RRFS are far too
large.

Another interesting difference between the two models is
that RRFS captures the timing of the peak counts and overall
amplitude of evolution in storm counts throughout the storm sys-
tem life cycle much better than the HRRR for the clusters and
cellular storm categories. The counts predicted by the
HRRR model tend to be delayed by 1–2 h for these two
convective modes while the timing of peak values obtained
with RRFS are generally much closer to that observed.
Thus, while HRRR generally performed better at predicting

total storm area (Fig. 14), RRFS performed better in storm
counts (Fig. 15).

Finally, the ISAR is shown in Fig. 16. This metric provides
an indication of model skill at predicting mean storm size. It is
seen that both models handle the evolution of mean storm
size for the MCS category fairly well compared with the other
modes, with mean storm size peaking later in the models than
observed. For all other storm convective modes, both models
tend to predict individual storms that are much larger than
observed with this bias generally increasing as a function of
decreasing storm organization, with the RRFS ISAR up to
140% greater than observed for the cellular mode.

4) ASSESSMENT BY MODEL FORECAST ANALYSIS TIME

AND FORECAST LENGTH

Other factors that can affect model performance are the
analysis time and forecast length relative to the observed
storm initiation time. To investigate these factors, the model

FIG. 15. Normalized total storm count using a 35-dBZ threshold, subset by mature convective mode.
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analysis time was varied from 6 h before to 4 h after the observed
storm initiation time (65 h relative to the primary model analysis
time used earlier in this study). Only cases with at most one miss-
ing model forecast time out to 15 h were selected, which limited
this subset to 13 cases: 4 MCSs, 2 QLCSs, 4 clusters, and 3 cellu-
lar (Table 1).

Figure 17 shows the normalized total storm area for MRMS,
HRRR and RRFS as a function of hours into the event with
hour 0 indicating the observed storm initiation time. Lines for
the forecasts initialized after the observed storm initiation
time (green-to-purple colored lines) start at x values greater
than or equal to zero. As previously described from Fig. 10, the
RRFS model predicts larger storm areas than HRRR at all
lead times for the forecast issued 1 h before initiation. This
plot indicates that bias in RRFS relative to the HRRR is
consistently high regardless of whether the convective storm
system was present in the observations (i.e., positive lags) or
had not yet formed (negative lags). It is noted that the

normalized total storm area values for the model analysis
time (i.e., forecast hour 0) are not shown in the interest of
clarity because they tend to be dramatically higher than all
of the forecast hours due to the very high biases found at a
threshold of 35 dBZ (Fig. 3).

As seen in Fig. 17, the MRMS observed total storm area in-
creases from event hour 0 to 7, and then gradually decreases
thereafter. The HRRR total storm area increases faster than
observed during the storm initiation and growth period and
are nearly all higher than observed throughout the period,
with peak times ranging from 6 to 9 h. The RRFS total storm
area is too high and increases much faster than the HRRR for
analysis lags from 25 to 11 h, while at lags of 12 h and
greater the peak storm area is not biased quite as high. These
trends are also inspected as a function of model analysis time
for a given valid time of 7 h into the event (Fig. 18). Here it is
evident that the best performing analysis lag times are from
1 h before to 3 h after CI with the HRRR, while for the RRFS

FIG. 16. Individual storm area ratio using a 35-dBZ threshold, subset by mature convective mode.
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the best performing analysis times are 2–4 h after CI. Also of
note is that the best performing RRFS runs have biases similar
to the worst performing HRRR run (that issued 4 h before ob-
served CI). These results suggest that there may be an optimal
stage of storm maturity early in the convective system’s life cy-
cle for which the DA and cloud analysis is most effective.

Normalized storm counts were mostly underestimated re-
gardless of the model analysis times, with HRRR generally
underestimating the counts more than RRFS, particularly
during the storm initiation and growth phase (Fig. 19). Also
evident is that the RRFS simulations issued after CI more
closely matched the observed counts than the HRRR simula-
tions issued at CI. A similar pattern is evident in the magni-
tude of the storm counts with the HRRR model having
higher peak values at earlier (from 25 to 22 h) analysis lags,
and RRFS having higher peak values at earlier (from 25 to
0 h) and very late (15 h) analysis lags. The biases in modeled
ISAR do not appear to have any relationship with analysis
time relative to the storm initiation event with all lags showing
that both models have much larger area ratios (larger storm
sizes) than observed, with RRFS having larger storms than
the HRRR (Fig. 20).

4. Discussion and conclusions

This study assesses the skill of two convection-permitting
models at predicting the macroscale characteristics of wide-
spread convective events observed during JJA 2022. The two
models evaluated were the operational HRRR (version 4)

and the summer 2022 version of the experimental RRFS. The
convective events were manually selected based on visual in-
spection of the MRMS composite reflectivity during periods
when all three products had nearly complete availability. A
total of 32 cases in total were selected, 8 from 4 different ma-
ture convective modes: MCSs, QLCSs, clusters, and cellular.
These cases had similar storm object size distributions to the
summer as a whole, indicating the general applicability of the

FIG. 17. Normalized total storm area using model analysis times
varying from 25 to 15 h relative to the primary model analysis
time (21 h) used in the rest of the article, and only using the subset
of 13 cases with sufficient availability across model runs. Lines are
colored by model analysis lag and are dashed to differentiate be-
tween the products. The vertical brown line at event hour 7 indi-
cates the event hour depicted in Fig. 18.

FIG. 18. Normalized total storm area by model analysis lag at
event hour 7 (indicated by the brown vertical line in Fig. 17.) A
horizontal black line shows the single MRMS value for reference.

FIG. 19. As in Fig. 17, but for normalized total storm count.
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findings. However, since cases were conditionally sampled
based on the observations, the study does not address the pos-
sibility of either model predicting a widespread convective
event that did not occur.

Instead of trying to match individual storm objects obtained
with a given model to those found in the observations as dis-
cussed by Davis et al. (2006), validation areas were manually
drawn to ensure that the distribution of storm objects being
compared were from the same widespread storm event in
each dataset. This allowed for statistical comparisons of the
macroscale properties of convective elements contained within
the validation area without requiring individual storm ele-
ments within the convective storm area to overlap. The mod-
eled evolution of storm macrophysical properties (total storm
area, total storm count, and individual storm area ratio were
evaluated relative to that obtained from MRMS observations
using a compositing technique.

Several notable differences in the statistical performance of
HRRR and RRFS were found. The distribution of intensities
at the analysis times differed dramatically between the two

forecast models despite both using the same method for as-
similating radar reflectivity and for performing the cloud anal-
yses. This difference at analysis time provides an indication of
the different nature of the coupling between the DA system
and the two dynamical cores. Using an object-identifying
threshold of 35 dBZ revealed that convective storm areas
predicted by RRFS were 60% larger than those predicted
by HRRR (Table 2). It was also found that this bias in
RRFS increased with decreasing storm organization, with
the largest positive bias being for total storm area for wide-
spread areas of predominantly cellular storms (Table 2). On
the other hand, the HRRR bias was less a function of storm
organization.

Both models had difficulty capturing the storm initiation as
evidenced by underprediction of the storm counts during the
storm initiation and growth phase (i.e., first 4–6 h of storm
evolution) regardless of convective mode (Table 2). This
underprediction of storm initiation and growth is consistent
with that found by James et al. (2022) for the HRRR. How-
ever, the RRFS better captured CI than the HRRR in terms
of timing with a reduced lag in the period of increasing storm
counts (Table 2). This improvement in the timing of CI shows
up most prominently in the clusters and cellular convective
modes. At the same time, the HRRR better captured the am-
plitude of the evolution of storm area and storm size particu-
larly for the clusters and cellular convective storm modes.
Details of the comparison of relative performance of the
RRFS and HRRR for several key metrics (including those
discussed above) are given in Table 2.

Analyses using other reflectivity thresholds focused more on
the models’ ability to evaluate storms surrounded by stratiform
rain regions (20 and 25 dBZ), or to focus primarily on stronger
convective cores (40 and 40 dBZ). For the lower stratiform pre-
cipitation-encompassing thresholds, RRFS nearly matches the
observed normalized total storm area in both timing and ampli-
tude, but predicts too few storms. In contrast, even though
storm counts are close to reality, RRFS has large total storm
area biases at thresholds more indicative of the convective
cores, with biases increasing as a function of increasing thresh-
old. On the other hand, HRRR underpredicts the total area
coverage and counts at lower dBZ thresholds, pointing to a ten-
dency to underpredict the number and coverage of stratiform
rainfall associated with convection; at higher convective core

TABLE 2. Relative performance of HRRR and RRFS for key characteristics of convection.

Storm characteristic Figure HRRR RRFS

Bias in total storm area at peak maturity Fig. 10a 15% 160%
Bias in total storm area at peak maturity}clusters Fig. 14c 210% 160%
Bias in total storm area at peak maturity}cellular storms Fig. 14d 110% 1120%
Bias in storm counts at peak maturity Fig. 10b 220% 210%
Bias in peak ISAR at 20 dBZ Fig. 13a 220% 210%
Bias in peak ISAR at 45 dBZ Fig. 13d 140% 1140%
Bias in storm counts during CI/growth phase of storm evolution Fig. 10b 240% 220%
Bias in storm counts during CI/growth phase of storm evolution–clusters Fig. 15c 260% 220%
Bias in storm counts during CI/growth phase of storm evolution–cellular storms Fig. 15d 260% 220%
Bias in timing of CI based on storm counts during first few hours of storm evolution Fig. 10b 23 h 21.5 h

FIG. 20. As in Fig. 17, but for individual storm area ratio.
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thresholds, HRRR overpredicts the area but at a much lower
magnitude than RRFS, while the storm counts are nearer to
observations.

It is noted that not all aspects of the relative performance
of RRFS and HRRR have been evaluated in this study. For
example, the 32 cases used in this study were conditionally se-
lected based on observed widespread storm events. While the
models generated too much storm area in a few cases, it is not
possible to determine whether or not either model falsely pre-
dicted widespread events that were not present in the observa-
tions. Another limitation of this study is that most of the
model evaluation focused on runs initialized 1 h before the be-
ginning of storm initiation for a given event [exception to this
is the lag analyses presented from the 13 cases in section 3c(4)
that had sufficient model availability]. By evaluating only fore-
casts issued 1 h before CI, it is not possible to evaluate
whether the models tended to initiate storms before they were
observed. As such, most of the analyses can only uncover de-
lays in the modeled timing of CI. Another limitation of this
study is that only 8 of the cases were observed to initiate be-
tween 0000 and 1300 UTC; therefore, the statistics are domi-
nated by storms that initiated during daytime.

While the differences in skill between HRRR and RRFS
are expected to change as RRFS research and development
efforts continue, there is recent evidence suggesting that the
biases reported herein may not be completely alleviated prior
to the RRFS becoming operational (Alexander et al. 2023).
In particular, this is true for the oversized nature of the con-
vective cores identified using thresholds of 35 dBZ or greater.
As such, use of the operational RRFS predictions of convec-
tive weather should take into account both the improved
characterization of the timing and evolution of convection of
the smaller scale storms (clusters and cellular) while at the
same time understanding that the size of these smaller scale
storms (and overall area coverage) will tend to be overpre-
dicted. Given that the area coverage is likely to be overdone
for these storm types, users of future releases of the RRFS
model might need to take this into account when issuing fore-
cast products that include area coverage such as the Traffic
Flow Management (TFM) Convective Forecast (TFC) which
is produced by the Aviation Weather Center. Future work will
be needed to determine whether the biases reported herein
are manifested in the operational version that will be re-
leased in early 2025 (Alexander et al. 2023). Moreover, the
impact of such biases on downstream decision support
tools and applications like TFC and the NextGen Weather
Processor (FAA 2022b) will need to be determined once
Version 1 of the RRFS modeling system has been finalized.
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